EVCB14N SeriesModbus Communication Module User Guide EVCB14NITOS (0 TRIACS / pressure independent) EVCB14NIT2S (2 TRIACS / pressure independent) EVCB14NIT4S (4 TRIACS / pressure independent) EVCB14NDT4S (4 TRIACS / pressure dependent) **EVCB14NIT0SF** (0 TRIACS / pressure independent / with feedback) **EVCB14NIT4SF** (4 TRIACS / pressure independent / with feedback) ## Introduction The EVCB14N Series Modbus Communication Module User Guide provides information for using Neptronic[®] communication feature. The controller uses Modbus communication protocol over serial line in the RTU mode and provides a Modbus network interface between client devices and Neptronic EVCB14N Series devices. The EVCB14N Series Modbus Guide assumes that you are familiar with Modbus terminology. The following are the requirements for Modbus: - Data Model. The EVCB Modbus server data model uses only the Holding Registers table. - Function Codes. The EVCB Modbus server supports a limited function codes subset comprising: - o Read Holding Registers (0x03) - Write Single Register (0x06) - Write Multiple Registers (0x10) - Exception Responses. The EVCB Modbus server supports the following exception codes: - Illegal data address - o Illegal data value - Slave device busy - Serial Line. The EVCB Modbus over serial line uses RTU transmission mode over a two-wire configuration RS485 (EIA/TIA-485 standard) physical layer. - The physical layer can use fixed baud rate selection or automatic baud rate detection (default) as per the Modbus Auto Baud Rate device menu item or holding register index 1. - The supported baud rates are 9600, 19200, 38400, and 57600. - The physical layer also supports variable parity control and stop bit configuration as per the Modbus Comport Config device menu item or holding register index 2. - In auto baud rate configuration, if the device detects only consecutive bad frames (2 or more) for one second with any given baud rate, it will reinitialize itself to the next baud rate. - Addressing. The EVCB device only answers at the following address: - The device's unique address (1 to 246) that can be set through the device menu or through holding register index 0. ## **Holding Registers Table** ## **Table Glossary** | Name | Description | Name | Description | |------------|--|-------|---| | W | Writable Register | ASCII | For registers containing ASCII (8-bit) characters | | RO | Read Only Register | MSB | Most Significant Byte | | Unsigned | For range of values from 0 to 65,535, unless otherwise specified | LSB | Least Significant Byte | | Signed | For range of values from -32,768 to 32,767, unless otherwise specified | MSW | Most Significant Word | | Bit String | For registers with multiple values using bit mask (example, flags) | LSW | Least Significant Word | ## **Holding Register Table** | Register
Index | Description | Data Type | Range | Writable | |-------------------|--|-----------------------|--|----------| | 4000 0 | Modbus Address and Product Type. | Unsigned | MSB = Product type (e.g. 111 for EVCB)
LSB = Modbus Address (e.g. 1-246) | W | | 40001 | MSTP Baud Rate. | Unsigned
Scale 100 | 0, 9600, 19200, 38400, or 57600
0 = Auto Baud Rate Detection
Value/100 (e.g. 38400 baud = 384) | w | | 4000 2 | Modbus Slave Communication Port Configuration. | Unsigned | 1= No parity, 2 Stop bits 2= Even parity, 1 stop bit 3= Odd parity, 1 stop bit | w | | 4000 3 | Product Name (characters 8 & 7). | ASCII | 1 to 65,535 char 8: 0x53 = S char 7: 0x00 = | W | | 4000 4 | Product Name (characters 6 & 5). | ASCII | 1 to 65535 char 6: 0x49 = I char 5: 0x34 = | 4 W | | 4000 5 | Product Name (characters 4 & 3). | ASCII | 1 to 65535 char 4: 0x42 = B char 3: 0x4E = | N W | | 4000 6 | Product Name (characters 2 & 1). | ASCII | 1 to 65535 char 2: 0x45 = E char 1: 0x56 = | V W | | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|-----------------------|---|----------| | 4000 7 | Product actual firmware version. | Unsigned | 1 to 65535 (e.g. 410) | RO | | 4000 8 | Product actual EEPROM version. | Unsigned | 1 to 65535 (e.g. 203) | RO | | 4000 9 | System Status 1. | Bit String | [B0 – B11]: Reserved B12: CO2 alarm 0 = Normal; 1 = Alarm B13: Pressure mode (actual status) 0 = Independent; 1 = Dependent | RO | | | | | B14: Air Flow 0 = Normal; 1 = Error | | | 400 10 | System Status 2. | Bit String | [B0-B11, B13-B14]: Reserved B12: Alarm override 0 = Normal; 1 = Alarm | RO | | 400 11 | Internal Temperature. | Unsigned
Scale 100 | 0 to 5000
Value x 100 (e.g. 23°C = 2300) | RO | | 400 12 | External Temperature. | Signed
Scale 100 | -4000 to 10000
Value x 100 (e.g. 18°C = 1800) | RO | | 400 13 | Change Over Temperature. | Signed
Scale 100 | -4000 to 10000
Value x 100 (e.g. 18°C = 1800) | RO | | 400 14 | Internal Humidity Internal humidity, reading of the integrated humidity sensor of TRLH or TRLGH. If not available the value will be fixed to 0x7FFF (32767) | Signed
Scale 10 | 0 to 1000
Value x 10 (e.g. 45%RH = 450) | RO | | 400 15 | Input 3 reading, pressure sensor value (*Not available on all models) | Unsigned | 0 to 4000 mV | RO | | 400 16 | Analog input 1 value. | Unsigned
Scale 100 | 0 to 1000
Value x 100 (e.g. 2 mV = 200) | RO | | 400 17 | Analog Input 2 value. | Unsigned
Scale 100 | 0 to 1000
Value x 100 (e.g. 3 mV = 300) | RO | | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|-----------------------|--|----------| | 400 18 | CO2 value in ppm If using TRLG or TRLG and CO2 is in TRL mode, it is the sensor value in ppm. If using Al1 or Al2 and CO2 is set in Analog more, the reading is from the external sensor. | Unsigned
Scale 100 | 100 to reg 400 98 <i>Value x 100 (e.g. 5 ppm = 500)</i> | RO | | 400 19 | Air supply temperature. | Signed
Scale 100 | -4000 to 10000
Value x 100 (e.g. 5°C = 500) | RO | | 400 20 | Control temperature. | Signed
Scale 100 | -4000 to 10000
Value x 100 (e.g. 25°C = 2500) | W | | 400 21 | Heating demand for heating ramp 1. | Unsigned
Scale 10 | 0 to 1000
Value x 10 (e.g. 25% = 250) | RO | | 400 22 | Cooling demand for cooling ramp 1. | Unsigned
Scale 10 | 0 to 1000
Value x 10 (e.g. 25% = 250) | RO | | 400 23 | Temperature offset applied on internal temperature. | Signed
Scale 100 | -500 to 500
Value x 100 (e.g. 0.5°C = 50) | W | | 400 24 | Temperature offset applied on external temperature. | Signed
Scale 100 | -500 to 500
Value x 100 (e.g. 0.5°C = 50) | W | | 400 25 | Temperature setpoint used during the occupancy period of the day. | Unsigned
Scale 10 | Range: 400 26 to 400 27
<i>Value x 10 (e.g. 20°C = 200)</i> | W | | 400 26 | Minimum temperature setpoint used during the day. | Unsigned
Scale 10 | Range: 100 to 400 27 <i>Value x 10 (e.g. 10°C = 100)</i> | W | | 400 27 | Maximum temperature setpoint used during the day. | Unsigned
Scale 10 | Range: 400 26 to 400
<i>Value x 10 (e.g. 40°C = 400)</i> | W | | 400 28 | Cooling setpoint during No Occupancy / Night Set Back | Unsigned
Scale 10 | Range: 400 29 to 400
<i>Value x 10 (e.g. 22°C = 220)</i> | W | | 400 29 | Heating setpoint during No Occupancy / Night Set Back | Unsigned
Scale 10 | Range: 100 to 400 28 <i>Value x 10 (e.g. 16°C = 160)</i> | W | | 400 30 | Cooling demand for proportional band 1. | Unsigned
Scale 10 | 5 to 50
Value x 10 (e.g. 0.3°C = 3) | W | | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|----------------------|--|----------| | 400 31 | Heating demand for proportional band 1. | Unsigned
Scale 10 | 5 to 50
Value x 10 (e.g. 0.3°C = 3) | W | | 400 32 | Cooling dead band for proportional band 1. | Unsigned
Scale 10 | 0 to 50
Value x 10 (e.g. 0.3°C = 3) | W | | 400 33 | Heating dead band for proportional band 1. | Unsigned
Scale 10 | 0 to 50
Value x 10 (e.g. 0.3°C = 3) | W | | 400 34 | Changeover temperature setpoint. | Unsigned
Scale 10 | 100 to 400
Value x 10 (e.g. 12°C = 120) | W | | 400 35 | Night setback override delay in minutes. | Unsigned | 0 to 180 minutes | W | | 400 36 | Integral time factor for heating in seconds. | Unsigned | 0 to 250 seconds | W | | 400 37 | Cooling anti-cycle delay: delay in minutes before activating or reactivating the cooling contact. | Unsigned | 0 to 15 minutes | W | | 400 38 | Floating time 1: Indicates the time in seconds required by the actuator to complete a 90° run. | Unsigned | 15 to 250 seconds | W | | 400 39 | Occupancy Delay Mode in minutes | Unsigned | 0 to 180 minutes | W | | 400 40 | Cooling demand for cooling ramp 2. | Unsigned
Scale 10 | 0 to 1000 % Value x 10 (e.g. 30% = 300) | RO | | 400 41 | Proportional band for cooling ramp 2 | Unsigned
Scale 10 | 5 to 50
Value x 10 (e.g. 0.2°C = 2) | W | | 400 42 | Dead band for cooling ramp 2. | Unsigned
Scale 10 | 0 to 50
Value x 10 (e.g. 0.2°C = 2) | W | | 400 43 | Heating demand for heating ramp 2. | Unsigned
Scale 10 | 0 to 1000 % Value x 10 (e.g. 30% = 300) | W | | 400 44 | Proportional band for heating ramp 2. | Unsigned
Scale 10 | 5 to 50
Value x 10 (e.g. 0.2°C = 2) | W | | 400 45 | Dead band for heating ramp 2. | Unsigned
Scale 10 | 0 to 50
Value x 10 (e.g. 0.2°C = 2) | W | www.neptronic.com Page | 5 Not effective on all models. ## EVCB14N Series #### Modbus Communication Module User Guide | Register
Index | Description | Data Type | Range | Writable | |-------------------------|--|----------------------|--|----------------| | 400 46 | Changeover demand for the VAV box. | Unsigned
Scale 10 | 0 to 1000 %
Value x 10 (e.g. 30% = 300) | RO | | 400 47 | Changeover proportional band: the range in which the controller modulates the cooling and heating output from 0 to 100%. | Unsigned
Scale 10 | 5 to 50
Value x 10 (e.g. 0.2°C = 2) | W | | 400 48 | Changeover deadband: the range at which the controller takes no action when the temperature is above or below the setpoint. | Unsigned
Scale 10 | 0 to 50
Value x 10 (e.g. 0.2°C = 2) | W | | 400 49 | AO1 min Vdc: minimum voltage of analog output 1. | Unsigned
Scale 10 | Range: 0 to reg. 400 51 <i>Value x 10 (e.g. 2 Volts = 20)</i> | W | | 400 50 | AO2 min Vdc: minimum voltage of analog output 2. | Unsigned
Scale 10 | Range: 0 to reg. 400 52 <i>Value x 10 (e.g. 2 Volts = 20)</i> | W | | 400 51 | AO1 max Vdc: maximum voltage of analog output 1. | Unsigned
Scale 10 | Range: reg. 400 49 to 100
<i>Value x 10 (e.g. 10 Volts</i> = 100) | W | | 400 52 | AO2 max Vdc: maximum voltage of analog output 2. | Unsigned
Scale 10 | Range: reg. 400 50 to 100
<i>Value x 10 (e.g. 10 Volts</i> = 100) | W | | * = The mi
100%. For | inimum and maximum voltages correspond to 0 to 100% demand. The reference applications, we recommend to leave the minimum voltage at 0 | minimum voltage is | s always applied to the output. The maximum voltage is applied when the ong when the demand is 0%. | demand reaches | | 400 53 | Time of numerical filter of delta pressure in seconds. Not effective on all models. | Unsigned | 1 to 10 seconds | w | | 400 54 | Factor of V=K*sqrt(dP), where dP = 1. Not effective on all models. | Unsigned | Range: 100 to 9995 CFM | W | | 400 55 | Minimum air flow for cooling. Not effective on all models. | Unsigned | Range: 0 or (12.7%) Kfac to reg 400 56 CFM | W | | 400 56 | Maximum air flow for cooling. Not effective on all models. | Unsigned | Range: reg 400 55 to reg 400 54 CFM | W | | 400 57 | Minimum air flow for heating. Not effective on all models. | Unsigned | Range: 0 or (12.7%) Kfac to reg 400 58 CFM | w | | 400 58 | Maximum air flow for heating. | Unsigned | Range: reg 400 57 to reg 400 54 CFM | W | | Register
Index | Description | Data Type | Range | Writable | |-------------------|--|----------------------|---|----------| | 400 59 | Integral time factor of air flow in minutes. Not effective on all models. | Unsigned | 0 to 60 minutes | W | | 400 60 | Actual air flow converted from delta pressure sensor. Not effective on all models. | Unsigned | Range: 0 to reg 400 54 CFM | RO | | 400 61 | Air flow calculated from system demand. Not effective on all models. | Unsigned | Range: 0 to 9999 CFM | RO | | 400 62 | Configuration value for Air Flow Max used during airflow balancing sequence. Refer to EVCB-Airflow Balance Instructions. Not effective on all models. | Unsigned | Range: 0 to 9999 CFM | W | | 400 63 | Analog output 1 value. | Unsigned
Scale 10 | Unit: Volt, Range: reg 400 49 to reg 400 51 <i>Value x 10 (e.g. 5 Volts = 50)</i> | W | | 400 64 | Analog output 2 value. | Unsigned
Scale 10 | Unit: Volt, Range: reg 400 50 to reg 400 52 <i>Value x 10 (e.g. 5 Volts = 50)</i> | W | | 400 65 | Percentage of demand to close TRIAC output 1. Not available on all models. | Unsigned | 15 to 80% | W | | 400 66 | Percentage of demand to close TRIAC output 2. Not available on all models. | Unsigned | 15 to 80% | W | | 400 67 | Percentage of demand to close TRIAC output 3. Not available on all models. | Unsigned | 15 to 80% | W | | 400 68 | Percentage of demand to close TRIAC output 4. Not available on all models. | Unsigned | 15 to 80% | W | | 400 69 | Percentage of demand to open TRIAC output 1. Not available on all models. | Unsigned | 0 to reg 400 65- 4% | W | | 400 70 | Percentage of demand to open TRIAC output 2. Not available on all models. | Unsigned | 0 to reg 400 65- 4% | W | | 400 71 | Percentage of demand to open TRIAC output 3. Not available on all models. | Unsigned | 0 to reg 400 65- 4% | W | | 400 72 | Percentage of demand to open TRIAC output 4. Not available on all models. | Unsigned | 0 to reg 400 65- 4% | W | ## **EVCB14N Series** #### Modbus Communication Module User Guide | Register
Index | Description | Data Type | Rai | nge | Writable | |--------------------|--|------------|---|---|----------| | 400 73 | Integral time factor for cooling in seconds. | Unsigned | 0 to 250 seconds | | W | | 400 74 | Motor position. Not effective on all models. | Unsigned | 0 to 100% | | RO | | 400 75 to 4 | 100 80 - Reserved | | | | RO | | 400 81 | Air flow offset calibration. Refer to EVCB-Airflow Balance Instructions.Not effective on all models. | Signed | -500 to 500 CFM | | W | | 400 84 | Configuration value for Air Flow Min used during airflow balancing sequence. Refer to EVCB-Airflow Balance Instructions. Not effective on all models. | Unsigned | Range: 0 to 9999 CFM | | W | | 400 82 , 40 | 400 82 , 400 83 , and 400 85 to 400 95 - Reserved | | | | RO | | 400 96 | Network fallback timeout Present Value in minutes. | Unsigned | 0 to 60 minutes | | W | | 400 97 | Reserved | | | | RO | | 400 98 | Maximum range of the CO2 sensor connected to Al1 or Al2. | Unsigned | 100 to 5000 PPM | | W | | 400 99 | Maximum concentration of CO2 before the EVC activates an alarm. | Unsigned | Range: 100 to the greater ppm value between 2000 and reg 40098 | | W | | 40 100 | System Option 1. The Not effective on all models. | Bit String | B3, B13-B14: Reserved B0: Tstat temperature units 0 = Celsius; 1 = Fahrenheit B1: Modbus temperature units 0 = Celsius; 1 = Fahrenheit B2: Temperature setpoint lock 0 = Unlocked; 1 = Locked B4: T01/T02 floating direction 0 = Direct; 1 = Reverse B5: T03/T04 floating direction 0 = Direct; 1 = Reverse B6: Onboard motor direction 0 = Direct; 1 = Reverse | B7: Freeze protection 0 = Disabled; 1 = Enabled B8: User system off mode 0 = User can set Tstat to OFF 1 = User cannot set Tstat OFF B9: Keypad bottom left lock 0 = Unlocked; 1 = Locked B10:Keypad upper left lock 0 = Unlocked; 1 = Locked B11: Keypad arrows lock 0 = Unlocked; 1 = Locked B12: Program lock 0 = Unlocked; 1 = Locked B15: Schedule 0 = Disabled; 1 = Enabled | W | #### Modbus Communication Module User Guide | Register
Index | Description | Data Type | R | ange | Writable | |-------------------|--|------------|--|---|----------| | 40 101 | System Option 2. Notes B14: Applies only if DI2 is in OverHeat or Override. B15: Configuration value of the fan operation when an output ramp is configured with the option "Fan On". When set to (0) On, the fan is continuously in operation even when EVC is off. When set to (1) Off, the fan turns off during the following conditions; User System Mode is set to OFF, when in night setback mode, scheduler forces the EVC OFF or when Digital Input 2 is set to Override and is active. ^Ф Not effective on all models. | Bit String | B0-B1, B13: Reserved B2: Auto baud rate detection 0 = Enabled; 1 = Disabled B3: Night setback mode 0 = Tstat ON; 1 = Tstat OFF B4: AO1 direction 0 = Direct; 1 = Reverse B5: AO2 direction 0 = Direct; 1 = Reverse B6: TO1 direction 0 = Direct; 1 = Reverse B7: TO2 direction 0 = Direct; 1 = Reverse | B8: TO3 direction [®] $0 = Direct; 1 = Reverse$ B9: TO4 direction [®] $0 = Direct; 1 = Reverse$ B10: Display RH [®] $0 = No; 1 = Yes$ B11: Pressure mode select [®] $0 = independent; 1 = dependent$ B12: Auto pressure mode [®] change $0 = Enabled; 1 = Disabled$ B14: DI 2 Contact $0: NO; 1: NC$ B15: Fan always "on" mode $0 = Always on;$ $1 = Follow NSB/NoOcc$ | W | | 40 102 | Status value of the actual changeover control mode. | Unsigned | 0 = Cooling , 1= Heating | | RO | | 40 103 | System command status. $^{\Phi}$ Not effective on all models. | Unsigned | 0 = No Command, 1 = AirFlow 1 I | Balancing, 4 = AirFlow 2 Balancing | W | | 40 104 | TO OnOff. * Not available on all models. | Unsigned | 1 = TO1 OnOff
2 = TO2 OnOff | 4 = TO3 OnOff
8 = TO4 OnOff | RO | | 40 105 | Occupancy or night setback mode commands. | Unsigned | 1 = Locally
2 = Off
3 = Occupancy | 4 = NoOccupancy
5 = Day
6 = Night | W | | 40 106 | Status of digital input 1. | Unsigned | 0 = Open, 1 = Close | | RO | | 40 107 | Analog input 1 signal. * Not available on all models. * Not effective on all models. | Unsigned | 1 = OFF 2 = ETS (external temp) 3 = SENS (changeover sensor) 4 = NoCL (normally cool) 5 = NoHT (normally heat) | 6 = STFL* (setpnt airflow 0-10Vdc) 7 = CO2 (carbon dioxide) 8 = AST (air supply temp sensor) 9 = mor [®] (motor position) | W | | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|-----------|--|----------| | 40 108 | User System Control Mode. | Unsigned | 1 = AUTO 3 = COOL
2 = HEAT 4 = OFF | W | | 40 109 | Sets the permissions or restrictions to change the system control mode by the user. | Unsigned | 1 = AUTO $3 = COOL$ $2 = HEAT$ $5 = AUTO-LOCK$ | W | | 40 110 | Indicates the status of the Night Setback mode. | Unsigned | 1 = Day, 2 = Night, 3 = Derogation | RO | | 40 111 | Configuration of DI1 mode. Night setback or no occupancy status. | Unsigned | 1=Off 4= Night Set Back NO 2= Occupancy NO 5= Night Set Back NC 3= Occupancy NC | W | | 40 112 | Analog input 2 signal. *Not available on all models. | Unsigned | 1 = OFF 2 = ETS (external temp) 3 = SENS (changeover sensor) 4 = NoCL (normally cool) 5 = NoHT (normally heat) 6 = STFL* (setpnt airflow 0-10Vdc) 7 = CO2 (carbon dioxide) 8 = AST (air supply temp sensor) 9 = mor (motor position) | W | | 40 113 | Occupancy status of the zone. | Unsigned | 1 = No Occupancy, 2 = Occupancy, 3 = Derogation | RO | | 40 114 | AO1: Analog output 1 control ramp Notes: Options 11 and 12 are for fan powered applications and only available with models: EVCB14NIT4S, EVCB14NDT4S, and EVCB14NIT4SF. *Not available on all models. | Unsigned | 1 = OFF 2 = CR1 (cooling ramp 1) 3 = CR2 (cooling ramp 2) 4 = HR1 (heating ramp 1) 5 = HR2 (heating ramp 2) 6 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 - 10 = reserved 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | 40 115 | AO2: Analog output 2 control ramp Notes: Options 11 and 12 are for fan powered applications and only available with models: EVCB14NIT4S, EVCB14NDT4S, and EVCB14NIT4SF. *Not available on all models. | Unsigned | 1 = OFF 2 = CR1 (cooling ramp 1) 3 = CR2 (cooling ramp 2) 4 = HR1 (heating ramp 1) 5 = HR2 (heating ramp 2) 6 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 - 10 = reserved 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | 40116 | TO1: Configuration of the ramp used to modulate (pulse or floating) or activate/deactivate (On/Off) TO1 based on demand.* Not available on all models. | Unsigned | 1 = OFF 2 = CR1 (cooling ramp 1) 3 = CR2 (cooling ramp 2) 4 = HR1 (heating ramp 1) 5 = HR2 (heating ramp 2) 1 = OFF 2 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 = COR* (changeover ramp) 9 = CH1* (cool/heat 1) 10 = ANLG* (analog 0-10Vdc) 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | Register
Index | Description | Data Type | | Range | Writable | |-------------------|---|-----------|---|---|----------| | 40117 | TO2: Configuration of the ramp used to modulate (pulse or floating) or activate/deactivate (On/Off) TO2 based on demand.* Not available on all models. | Unsigned | 1 = OFF 2 = CR1 (cooling ramp 1) 3 = CR2 (cooling ramp 2) 4 = HR1 (heating ramp 1) 5 = HR2 (heating ramp 2) | 6 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 = COR* (changeover ramp) 9 = CH1* (cool/heat 1) 10 = ANLG* (analog 0-10Vdc) 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | 40118 | TO3: Configuration of the ramp used to modulate (pulse or floating) or activate/deactivate (On/Off) TO3 based on demand.* Not available on all models. | Unsigned | 1 = OFF
2 = CR1 (cooling ramp 1)
3 = CR2 (cooling ramp 2)
4 = HR1 (heating ramp 1)
5 = HR2 (heating ramp 2) | 6 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 = COR* (changeover ramp) 9 = CH1* (cool/heat 1) 10 = ANLG* (analog 0-10Vdc) 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | 40 119 | TO4: Configuration of the ramp used to modulate (pulse or floating) or activate/deactivate (On/Off) TO4 based on demand.* Not available on all models. | Unsigned | 1 = OFF
2 = CR1 (cooling ramp 1)
3 = CR2 (cooling ramp 2)
4 = HR1 (heating ramp 1)
5 = HR2 (heating ramp 2) | 6 = CO2 (carbon dioxide) 7 = STFL* (setpnt airflow 0-10Vdc) 8 = COR* (changeover ramp) 9 = CH1* (cool/heat 1) 10 = ANLG* (analog 0-10Vdc) 11 = Fan Auto (follow demand) 12 = Fan On (always on) | W | | 40 120 | TO1: Signal output type for TRIAC output 1.* Not available on all models. | Unsigned | 3 = Pulsing, 4 = On_Off, 5 = F | loating | W | | 40 121 | TO2: Signal output type for TRIAC output 2.* Not available on all models. | Unsigned | 3 = Pulsing, 4 = On_Off | | W | | 40 122 | TO3: Signal output type for TRIAC output 3.* Not available on all models. | Unsigned | 3 = Pulsing, 4 = On_Off, 5 = F | loating | W | | 40 123 | TO4: Signal output type for TRIAC output 4.* Not available on all models. | Unsigned | 3 = Pulsing 4 = On_Off | | W | | 40 124 | Pressure independent output selection for VAV damper actuator.* Not available on all models. | Unsigned | 3 = Floating1, 4 = Floating2, 5 | = Motor | W | www.neptronic.com Page | 11 | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|-----------|---|----------| | 40 125 | Motor ramp: Configuration of the ramp used to modulate the actuator based on demand. *Not available on all models. | Unsigned | 2 = CR1 (cooling ramp 1) 7 = STFL* (setpnt airflow 0-10Vdc) 3 = CR2 (cooling ramp 2) 8 = COR (changeover ramp) 4 = HR1 (heating ramp 1) 9 = CH1 (cool/heat 1) 5 = HR2 (heating ramp 2) 10 = ANLG (analog 0-10Vdc) | W | | 40 126 | Changeover control mode status that indicates the source of changeover values. | Unsigned | 6 = Not Available 1 = Local, 2 = Cooling, 3 = Heating | W | | 40 127 | Reserved | | | RO | | 40 128 | Reserved | | | RO | | 40 129 | Configuration of DI2 mode. | Unsigned | 1=Off 2=Override 3=OverHeat1 4=OverHeat2 5=OverHeatAll 5=ChangeOverNoCooling 7=ChangeOverNoHeating | W | | 40 130 | Selected temperature control source (in Programming mode). | Unsigned | 1 = Internal Temperature, 2 = External Temperature 3 = Remote Temperature | W | | 40 131 | Airflow balance mode, enter the balancing mode to adjust air flow factor. ^Ф Not effective on all models. | Unsigned | 1 = Close 3 = Maximum Flow 2 = Minimum Flow 4 = Full Open | W | | 40 132 | Reserved | | | RO | | 40 133 | Configuration to set the motor position in night setback mode. $^\Phi$ Not effective on all models. | Unsigned | 1 = Auto
2 = Open | W | | 40 134 | Digital input 2 delay in seconds. | Unsigned | 0 to 3600 seconds | W | | 40 135 | Time in seconds required by the actuator to complete a 90° run.* Not available on all models. | Unsigned | 15 to 250 seconds | W | | 40 136 | Minimum motor position in percentage of stroke for cooling.* Not available on all models. | Unsigned | 0 to 100% | W | | 40 137 | Minimum motor position in percentage of stroke for heating.* Not available on all models. | Unsigned | 0 to 100% | W | | 40 138 | Airflow Hysteresis Stop in percentage.*Not available on all models. | Unsigned | 1 to 100% | W | | 40 139 | Airflow Hysteresis Start in percentage.*Not available on all models. | Unsigned | reg 40 138 to 100% | W | | 40 140 | Airflow scale.*Not available on all models. | Unsigned | 1 = Scale1, 2 = Scale10, 3 = Scale100 | W | | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|----------------------|--|----------| | 40 141 | Airflow fault deadband in percentage.*Not available on all models. | Unsigned | 1 to 30% | W | | 40 142 | Airflow fault error in percentage.*Not available on all models. | Unsigned | 0 to 100% | W | | 40 143 | Airflow fault hysteresis in percentage.*Not available on all models. | Unsigned | 1 to 30% | W | | 40 144 | Airflow fault time.*Not available on all models. | Unsigned | 2 to 59 minutes | W | | 40 145 | CL_HT SwitchTimer, waiting time before switching between the heating and cooling modes. | Unsigned | 0 to 120 minutes | W | | 40 146 | CL_HT SwitchTimerCount, countdown to indicate the swap between heating and cooling modes. | Unsigned | 0 to 4,294,967,295 seconds | RO | | 40 147 | FloatingTO1/TO2, TRIAC output 1 or 2 when set to floating, indicates the floating signal demand.* Not available on all models. | Unsigned
Scale 10 | 0 to 1000% Value x 10 (e.g. 15% =150) | RO | | 40 148 | FloatingTO3/TO4, TRIAC output 3 or 4 when set to floating, indicates the floating signal demand.* Not available on all models. | Unsigned
Scale 10 | 0 to 1000% Value x 10 (e.g. 15% =150) | RO | | 40 149 | TO1 Pulsing, TRIAC output 1 when set to Pulsed, indicates the pulse signal demand. * Not available on all models. | Unsigned
Scale 10 | 0 to 1000%
Value x 10 (e.g. 15% =150) | RO | | 40 150 | TO2 Pulsing, TRIAC output 2 when set to Pulsed, indicates the pulse signal demand. * Not available on all models. | Unsigned
Scale 10 | 0 to 1000%
Value x 10 (e.g. 15% =150) | RO | | 40 151 | TO3 Pulsing, TRIAC output 3 when set to Pulsed, indicates the pulse signal demand.* Not available on all models. | Unsigned
Scale 10 | 0 to 1000%
Value x 10 (e.g. 15% =150) | RO | | 40 152 | TO4 Pulsing, TRIAC output 4 when set to Pulsed, indicates the pulse signal demand.* Not available on all models. | Unsigned
Scale 10 | 0 to 1000%
Value x 10 (e.g. 15% =150) | RO | | 40 153 | Over heat status. | Unsigned | 1 = OverHeatNormal 3 = OverHeat2
2 = OverHeat1 4 = OverHeatAll | RO | | 40 154 | Configuration to override the motor position.* Not available on all models. | Unsigned | 1 = Auto 2 = Open 3 = Close 4 = AirFlowCoolMin 5 = AirFlowCoolMax | W | ## **EVCB14N Series**Modbus Communication Module User Guide | Register
Index | Description | Data Type | Range | Writable | |-------------------|---|------------|---|----------| | 40 155 | Information displayed on the TRL. | Unsigned | 1 = Temp Demand
2 = Setpoint Demand
3 = Temp 4 = Setpoint
5 = Off | W | | 40 156 | Status of digital input 2. | Unsigned | 0 = Open, 1 = Close | RO | | 40 157 | Cfg_Input3 Minimum Reading, this setting represents the deadband of the pressure sensor in mV.* Not available on all models. | Unsigned | 10 to 180 mV | W | | 40 158 | System Options 3 | Bit String | [B0 – B1], [B4 – B15]: Reserved B2: CO₂ Display 0 = No; 1 = Yes B3: CO₂ Control Source 0 = Analog; 1 = TRLG | W | | 40 159 | System Options 4 | Bit String | [B0 – B15]: Reserved | RO | | 40 160 | Internal CO2, reading of the integrated CO2 sensor of TRLG or TRLGH. If not available the value will be fixed to 0x7FFF (32767) | Unsigned | 0 to 2000 ppm | RO | | 40 163 | Occupancy minimum time in minutes. | Unsigned | 0 to 240 minutes | W | | Notes | | | | |-------|--|--|--| 400 Lebeau blvd, Montreal, Qc, H4N 1R6, Canada neptronic.com Toll free in North America: 1-800-361-2308 Tel.: (514) 333-1433 Fax: (514) 333-3163 Customer service fax: (514) 333-1091 Monday to Friday: 8:00am to 5:00pm (Eastern time)